

USN

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

SEMESTER END EXAMINATIONS - MARCH 2022

Program

B.E.: Electrical and Electronics

Semester

Engineering

100 Max. Marks:

Course Name

Signals and Systems

Course Code

: EE51

3 Hrs Duration

Instructions to the Candidates:

Answer one full question from each unit

Suitably assume any missing data.

UNIT- I

(10)CO1 Let $x(n) = 2^n [u(n+1) - u(n-3)]$, sketch the following signals. 1. a)

i) $Y_1(n) = x(n-1),$

ii) $Y_2(n) = x(n+1)$

iii) $Y_3(n) = x(-n+3)$

iv) $Y_4(n) = x(-n-2)$.

v) $Y_5(n) = x(n/2-1)$

(05)Consider an LTI system with $h(n)=(-1/4)^n u(n-1)$, CO1 b)

i) Is the system Causal?

ii) Is the system stable?

iii) Is the system memoryless?

Sketch x(t) and its odd and even parts $x(t)=e^{-t}u(t)$. CO1 (05)c)

Determine whether each of the following signals is periodic. CO1 (10)2. a) If a signal is periodic, find its fundamental period.

i) $x(n) = 5 \sin(0.2\pi n)$

ii) x(n) = cos(2n).

CO1 (05)b) A trapezoidal pulse, x(t) denoted by:

 $\{5-t, 4 \le t \le 5\}$

 $-4 \le t \le 4$

 $\{t+5, -5 \le t \le -4$

{ 0, otherwise,

is the signal power or energy? Find power or energy?

Find the even and odd part of the following signals: c) x(n)=u(n)

CO1 (05)

II - TINU

Compute 3. a) CO₂ (10)y(n)=h(n)*x(n) for $h(n)=(1/2)^n u[n]$ and $x(n)=2^n u[-n]$.

Derive the expression of convolution integral. b)

CO2 (10)

Convolute the two continuous time signals x(t) = u(t) and A. a) CO2 (10)h(t) = t u(-t)

Compute the convolution of two sequences $x_1(n)$ and $x_2(n)$, given b) CO₂ (10)below $x_1(n) = \{1,2,3\}$ and $x_2(n) = \{1,2,3,4\}$

UNIT - III

- (80)5. CO3 a) State and bring out the importance of sampling theorem.
 - (06)CO3 b) Find the forced response for the following differential equation:

$$\frac{d^2y}{dt^2} + 9y = \cos 4t$$

(06)CO₃ Draw direct form I and direct form II realization of the following c) systems:

$$\frac{d^2y}{dt^2} + y = 3\frac{dx}{dt}$$

(10)CO3 Find the complete response for the following differential equation: 6. a)

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 2x.$$

Given y(0) = -1, $y^{1}(0) = 1$ and $x(t) = \cos t u(t)$.

- (05)CO₃ Draw direct form I and direct form II realization of the following b) systems:y(n) - 1/9 y(n-2) = 2x(n) + x(n-1).
- (05)CO3 What is quantization? Explain the significance of quantization. c)

UNIT - IV

(10)Determine the Fourier series representation of the wave form shown CO4 7. a) in Fig Q7(a).

b)

Determine the DTFT of the following signals:
(i)
$$x(n) = \left(\frac{1}{2}\right)^n [u(n+3) - u(n-2)](ii)$$
 $x(n) = n\left(\frac{1}{2}\right)^n u(n)$

- C₀4 8. a) State and prove the following properties of DTFS: (10)
 - (i) Modulation (ii) Parseval's theorem. b) Find the FT of the following signals: C₀4 (10)

(i)
$$x(t) = e^{-3t} \cos \pi t$$
 u(t) (ii) $x(t) = \begin{vmatrix} 1 + \cos \pi t; & |t| < 1 \\ 0; & |t| > 1 \end{vmatrix}$.

UNIT - V

- Determine the z transform of the following and sketch the ROC: 9. a) **CO5** (10)i) $x(n) = \left(\frac{3}{4}\right)^n u(n) + 2^n u(-n-1)$ ii) $x(n) = [3(4)^n + 3(5)^n]u(n)$.
 - Find the total response of the system defined by the difference b) **CO5** (10)equation y(n) - 0.25 y(n - 1) - 0.125 y(n - 2) = x(n) + x(n - 1) with x(n) = u(n) and y(0) = 0 and y(-2) = 1.
- Find the inverse z- transform given: $X(z) = \frac{2z^2 + 2z^2 + 3z + 1}{2z^4 + 3z^2 + z^2} \quad \text{with } |z| > 1$ a) CO5 (10)
 - List the important properties of ROC. Also explain the time reversal b) CO5 (10)and time shifting properties of z- transform **********

(10)

CO4